We investigated the effects of increasing dietary protein and energy on concentrations of selected blood metabolites and hormones in Holstein heifers. Twenty-four heifers were fed 1 of 4 milk replacer (MR) diets for 9 wk (n = 6/diet): control [20% crude protein (CP), 21% fat MR fed at 441 g of dry matter (DM)/d], HPLF (28% CP, 20% fat MR fed at 951 g of DM/d), HPHF (27% CP, 28% fat MR fed at 951 g of DM/d), and HPHF+ (27% CP, 28% fat MR fed at 1,431 g of DM/d). Heifers were fed twice daily; water and starter (20% CP, 1.43% fat) were offered free choice and starter orts recorded daily. Serum and plasma aliquots from blood samples collected twice weekly after a 12-h fast were analyzed for insulin-like growth factor (IGF)-I, IGF-binding proteins (IGFBP), growth hormone (GH), insulin, glucose, nonesterified fatty acids, triglyceride, and plasma urea nitrogen concentrations. Only plasma glucose, IGFBP-2, and IGFBP-3 were affected by diet. Dietary treatment differences were only noted when the control was compared with the average of the other 3 diets. The addition of fat to the MR (HPLF vs. HPHF) and increased volume of MR (HPHF vs. HPHF+) had no effect on plasma glucose concentration or relative abundance of IGFBP-2 or IGFBP-3. Heifers fed the control diet had less glucose, greater IGFBP-2, and less IGFBP-3 than the average of the other 3 diets. There was a diet by week interaction for IGF-I. Serum IGF-I concentration in control heifers varied in a quadratic manner with a nadir (20 +/- 4 ng/mL) at wk 4, whereas IGF-I increased linearly in heifers on other diets. Both insulin and triglyceride changed over time in a complex pattern (significant linear and quadratic contrast effects). The greatest concentrations were measured at wk 0.5 with nadirs at wk 6 for both insulin and triglyceride. Serum GH concentration decreased in a linear manner from wk 0.5 to wk 9 in all heifers. Relative abundance of IGFBP-2 was quadratic over time with the greatest amount of IGFBP-2 observed at wk 5. With the exception of glucose, IGF-I, IGFBP-2, and IGFBP-3, the blood variables measured were not influenced by treatment. The IGF-I -GH-IGFBP axis requires further study in heifers to deduce effects of nutrition on hypothalamic regulation of metabolism. We expected to see more treatment differences in concentrations of metabolites involved with protein and fat metabolism. It is likely that the diets used in this study were not diverse enough in composition to elicit such changes or that the efficiency of use of absorbed protein and fat was not different in these animals.