Steroid synthesis and production in ruminant uterus is not obvious, especially in seasonally reproduced. We compared steroid production by investigating enzymes involved in red deer uterine steroid metabolism in reproductive seasons. Blood and uteri (endometrium and myometrium) were collected post mortem from hinds on 4th day (N = 8), 13th day of the cycle (N = 8), anestrus (N = 8) and pregnancy (N = 8). The expression of cytochrome P450 aromatase (P450), 3 -beta-hydroxysteroid dehydrogenase (3β-HSD), 17 -beta-hydroxysteroid dehydrogenase (17β-HSD), aldo–keto reductase family 1 C1 (AKR1C1), estrogen receptor alpha (ERα), and progesterone receptors (PRs), were analyzed using real-time-PCR and Western Blotting. Plasma samples were assayed for 17-beta-estradiol (E2), progesterone (P4), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (T4) concentrations by EIA. Hinds at the beginning of the estrous cycle, mainly in endometrium, were characterized by a high mRNA expression of 3β-HSD, AKR1C1, PRs and ERα, contrary to the expression in myometrium during pregnancy (P < 0.05). For P4, E2, and FSH, concentration was the highest during the 13th day of the estrous cycle (P < 0.05). Uterine steroid production and output in hinds as a representative seasonally reproduced ruminant occurred mainly during the estrous cycle and sustained in anestrus.