Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Wheat (Triticum aestivum L.) is a crucial staple crop upon which human sustenance relies. Consequently, investigating the developmental mechanisms of pistils and stamens in wheat is profoundly significant for enhancing wheat characteristics and boosting productivity. In this study, we cloned TaWI12 from common wheat and observed a significant resemblance among the three homoeologs of TaWI12. The open reading frames (ORFs) of TaWI12-4A, TaWI12-4B and TaWI12-4D were 408 bp, 417 bp and 417 bp, respectively, and encoded 135, 138 and 138 amino acids, respectively. The phylogenetic tree revealed a high degree of homology between the protein sequences of TaWI12 and the wound-induced proteins of Hordeum vulgare (KAE4994568) and Aegilops tauschii (XP_020196548). To clarify the characteristics and functions of TaWI12 homoeologs, we obtained transgenic positive plants of Arabidopsis thaliana, and observed significant filament shortening and decrease. Simultaneously, we used the CRISPR/Cas9 system to generate mutant plants via the modification of three homoeologs of TaWI12 in wheat. We noticed two distinct phenotypic differences in the knockout mutant. First, we observed the different degrees of homologous conversion of stamens to pistils in the single mutant TaWI12-4D. Second, we observed leaf cracking in both the single mutant TaWI12-4A and the double mutants TaWI12-4A and TaWI12-4D. Our findings further revealed that TaWI12 plays an important role in flower development, which is important for revealing the molecular mechanisms of pistil and stamen development in wheat and has important application value for high-yield wheat breeding.
Wheat (Triticum aestivum L.) is a crucial staple crop upon which human sustenance relies. Consequently, investigating the developmental mechanisms of pistils and stamens in wheat is profoundly significant for enhancing wheat characteristics and boosting productivity. In this study, we cloned TaWI12 from common wheat and observed a significant resemblance among the three homoeologs of TaWI12. The open reading frames (ORFs) of TaWI12-4A, TaWI12-4B and TaWI12-4D were 408 bp, 417 bp and 417 bp, respectively, and encoded 135, 138 and 138 amino acids, respectively. The phylogenetic tree revealed a high degree of homology between the protein sequences of TaWI12 and the wound-induced proteins of Hordeum vulgare (KAE4994568) and Aegilops tauschii (XP_020196548). To clarify the characteristics and functions of TaWI12 homoeologs, we obtained transgenic positive plants of Arabidopsis thaliana, and observed significant filament shortening and decrease. Simultaneously, we used the CRISPR/Cas9 system to generate mutant plants via the modification of three homoeologs of TaWI12 in wheat. We noticed two distinct phenotypic differences in the knockout mutant. First, we observed the different degrees of homologous conversion of stamens to pistils in the single mutant TaWI12-4D. Second, we observed leaf cracking in both the single mutant TaWI12-4A and the double mutants TaWI12-4A and TaWI12-4D. Our findings further revealed that TaWI12 plays an important role in flower development, which is important for revealing the molecular mechanisms of pistil and stamen development in wheat and has important application value for high-yield wheat breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.