Several groups are developing visual prostheses to aid patients with vision loss. While these devices have shown some success in the clinic, they are severely limited by poor resolution, and in many cases have as few as 15 electrodes. Pixel density is poor because high stimulation thresholds require large electrodes to minimize charge density that would otherwise damage the electrode and tissue. A significant contributor to high stimulation threshold requirements is poor biocompatibility. We investigated the application of one system popular in tissue engineering, drug-releasing hydrogels, as a mechanism to improve the tissue-electrode interface. Hydrogels studied (i.e., PEGPLA photocrosslinkable polymers) released neurotrophic factors (i.e., BDNF) known to promote neuron survival and neurite extension in the retina. Hydrogels were examined in co-culture with retinal explants for 7 and 14 days, at which time neurite extension and neurite density was measured. Neurite extension was enhanced in samples exposed to BDNF-releasing hydrogels at 7 days; however, these increases were absent by day 14 suggesting declining drug release. Thus, PEGPLA hydrogels are excellent candidates for short-term (< 14 day) acute release of therapeutic factors in the retina, but will require additional modifications for application with neural prostheses. Additionally, these results suggest that the effects of neurotrophic factors are short-lived in the absence of additional support cues, and tissue engineering systems employing such factors may only produce transient benefits to the patient.