The cullin RING E3 ubiquitin ligase 4 (CRL4) with its substrate receptor CDT2 (CRL4-CDT2) is emerging as a critical regulator of DNA replication through targeting CDT1, SET8, and p21 for ubiquitin-dependent proteolysis. The aberrant increased stability of these proteins in cells with inactivated CRL4-CDT2 results in DNA rereplication, which is deleterious to cells due to the accumulation of replication intermediates and stalled replication forks. Here, we demonstrate that CDT2 is overexpressed in head and neck squamous cell carcinoma (HNSCC), and its depletion by siRNA inhibits the proliferation of human papilloma virusnegative (HPV-ve) HNSCC cells primarily through the induction of rereplication. Treatment of HNSCC with the NEDD8-activating enzyme inhibitor pevonedistat (MLN4924), which inhibits all cullin-based ligases, induces significant rereplication and inhibits HNSCC cell proliferation in culture and HNSCC xenografts in mice. Pevonedistat additionally sensitizes HNSCC cells to ionizing radiation (IR) and enhances IR-induced suppression of xenografts in mice. Induction of rereplication via CDT2 depletion, or via the stabilization or activation of CDT1, also radiosensitizes HNSCC cells. Collectively, these results demonstrate that induction of rereplication represents a novel approach to treating radioresistant HNSCC tumors and suggest that pevonedistat may be considered as an adjuvant for IR-based treatments.