2023
DOI: 10.48550/arxiv.2301.10651
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Overcoming Prior Misspecification in Online Learning to Rank

Abstract: The recent literature on online learning to rank (LTR) has established the utility of prior knowledge to Bayesian ranking bandit algorithms. However, a major limitation of existing work is the requirement for the prior used by the algorithm to match the true prior. In this paper, we propose and analyze adaptive algorithms that address this issue and additionally extend these results to the linear and generalized linear models. We also consider scalar relevance feedback on top of click feedback. Moreover, we de… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?