A number of scientific reports published to date contain data on endogenous levels of various phytohormones in potato (Solanum tuberosum L.) but a complete cytokinin profile of potato tissues, that would include data on all particular molecular forms of cytokinin, has still been missing. In this work, endogenous levels of all analytically detectable isoprenoid cytokinins, as well as the auxin indole-3-acetic acid (IAA), and abscisic acid (ABA) have been determined in shoots and roots of 30 day old in vitro grown potato (cv. Désirée). The results presented here are generally similar to other data reported for in vitro grown potato plants, whereas greenhouse-grown plants typically contain lower levels of ABA, possibly indicating that in vitro grown potato is exposed to chronic stress. Cytokinin N-glucosides, particularly N7-glucosides, are the dominant cytokinin forms in both shoots and roots of potato, whereas nucleobases, as the bioactive forms of cytokinins, comprise a low proportion of cytokinin levels in tissues of potato. Differences in phytohormone composition between shoots and roots of potato suggest specific patterns of transport and/or differences in tissue-specific metabolism of plant hormones. These results represent a contribution to understanding the hormonomics of potato, a crop species of extraordinary economic importance. Plant hormones, also called phytohormones, are major factors controlling plant growth and development. They are divided into several classes based on chemical structure and biological roles. Major phytohormone classes include cytokinins, auxins, abscisic acid, gibberellins, ethylene, brassinosteroids, jasmonates, salicylic acid and strigolactones 1,2. Cytokinins (CKs) are a group of plant hormones with a wide spectrum of biological roles. Natural CKs share the structure of N 6-substituted adenine, whereby the nature of the N 6-substituent defines them as either isoprenoid or aromatic 3. The adenine-like structure of CKs and their biosynthetic dependence on adenine metabolism suggest their close physiological connection to the processes including growth and cell division, in which the actively dividing cells produce large amounts of nucleobases and ribosides, including adenine and adenosine, for de novo synthesis of DNA. In isoprenoid CKs, the N 6-atom of adenine is substituted with an isoprenoid (C 5) chain derived from dimethylallyl diphosphate. This CK class is the most widespread, and consists of N 6-(Δ 2-isopentenyl)adenine (iP),