2017
DOI: 10.1016/j.anres.2018.03.011
|View full text |Cite
|
Sign up to set email alerts
|

Overexpression and characterization of alkaliphilic Bacillus firmus strain K-1 xylanase

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 41 publications
0
1
0
Order By: Relevance
“…It is well known the existence of a synergistic relationship between cellulases and xylanases (Hu et al 2011; Kim et al 2014; Malgas et al 2017), that could be favoured by the pH conditions. Although xylanases from Bacillus and Paenibacillus have demonstrated to be active on a broad pH range (5 to 12) (Mongkorntanyatip et al 2017; Kurrataa’Yun and Meryandini 2015), the optimal pH interval for the majority of the bacterial endoglucanases is from 5 to 7 (Orencio-Trejo et al 2016; Sadhu and Maiti 2013). Under these physicochemical conditions, the removal of xylan by endo-xylanases, would allow the access of endo-cellulases to degrade cellulose microfibrils.…”
Section: Discussionmentioning
confidence: 99%
“…It is well known the existence of a synergistic relationship between cellulases and xylanases (Hu et al 2011; Kim et al 2014; Malgas et al 2017), that could be favoured by the pH conditions. Although xylanases from Bacillus and Paenibacillus have demonstrated to be active on a broad pH range (5 to 12) (Mongkorntanyatip et al 2017; Kurrataa’Yun and Meryandini 2015), the optimal pH interval for the majority of the bacterial endoglucanases is from 5 to 7 (Orencio-Trejo et al 2016; Sadhu and Maiti 2013). Under these physicochemical conditions, the removal of xylan by endo-xylanases, would allow the access of endo-cellulases to degrade cellulose microfibrils.…”
Section: Discussionmentioning
confidence: 99%