We investigated the relationship between Ang-(1-7) [angiotensin-(1-7)] action, sHTN (systolic hypertension), oxidative stress, kidney injury, ACE2 (angiotensin-converting enzyme-2) and MasR [Ang-(1-7) receptor] expression in Type 1 diabetic Akita mice. Ang-(1-7) was administered daily [500 μg/kg of BW (body weight) per day, subcutaneously] to male Akita mice from 14 weeks of age with or without co-administration of an antagonist of the MasR, A779 (10 mg/kg of BW per day). The animals were killed at 20 weeks of age. Age-matched WT (wild-type) mice served as controls. Ang-(1-7) administration prevented sHTN and attenuated kidney injury (reduced urinary albumin/creatinine ratio, glomerular hyperfiltration, renal hypertrophy and fibrosis, and tubular apoptosis) without affecting blood glucose levels in Akita mice. Ang-(1-7) also attenuated renal oxidative stress and the expression of oxidative stress-inducible proteins (NADPH oxidase 4, nuclear factor erythroid 2-related factor 2, haem oxygenase 1), pro-hypertensive proteins (angiotensinogen, angiotensin-converting enzyme, sodium/hydrogen exchanger 3) and profibrotic proteins (transforming growth factor-β1 and collagen IV), and increased the expression of anti-hypertensive proteins (ACE2 and MasR) in Akita mouse kidneys. These effects were reversed by A779. Our data suggest that Ang-(1-7) plays a protective role in sHTN and RPTC (renal proximal tubular cell) injury in diabetes, at least in part, through decreasing renal oxidative stress-mediated signalling and normalizing ACE2 and MasR expression.