Neurological damage is the pathological substrate of permanent disability in various neurodegenerative disorders. Early detection of this damage, including its identification and quantification, is critical to preventing the disease’s progression in the brain. Tau, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL), as brain protein biomarkers, have the potential to improve diagnostic accuracy, disease monitoring, prognostic assessment, and treatment efficacy. These biomarkers are released into the cerebrospinal fluid (CSF) and blood proportionally to the degree of neuron and astrocyte damage in different neurological disorders, including stroke, traumatic brain injury, multiple sclerosis, neurodegenerative dementia, and Parkinson’s disease. Here, we review how Tau, GFAP, and NfL biomarkers are detected in CSF and blood as crucial diagnostic tools, as well as the levels of these biomarkers used for differentiating a range of neurological diseases and monitoring disease progression. We also discuss a biosensor approach that allows for the real-time detection of multiple biomarkers in various neurodegenerative diseases. This combined detection system of brain protein biomarkers holds significant promise for developing more specific and accurate clinical tools that can identify the type and stage of human neurological diseases with greater precision.