Mycolic acids constitute pivotal constituents within the cell wall structure of Mycobacterium tuberculosis. Due to their structural diversity, the composition of mycolic acids exhibits substantial variations among different strains, endowing them with the distinctive label of being the ‘signature’ feature of mycobacterial species. Within Mycobacterium tuberculosis, the primary classes of mycolic acids include α-, keto-, and methoxy-mycolic acids. While these mycolic acids are predominantly esterified to the cell wall components (such as arabinogalactan, alginate, or glucose) of Mycobacterium tuberculosis, a fraction of free mycolic acids are secreted during in vitro growth of the bacterium. Remarkably, different types of mycolic acids possess varying capabilities to induce foamy macro-phages and trigger immune responses. Additionally, mycolic acids play a regulatory role in the lipid metabolism of host cells, thereby exerting influence over the progression of tuberculosis. Consequently, the multifaceted properties of mycolic acids shape the immune evasion strategy employed by Mycobacterium tuberculosis. A comprehensive understanding of mycolic acids is of paramount significance in the pursuit of developing tuberculosis therapeutics and unraveling the intricacies of its pathogenic mechanisms.