Oncolytic herpes simplex virus (oHSV) is a type of virus that selectively targets and kills cancer cells, leaving normal cells unharmed. Accurate viral titer is of great importance for the production and application of oHSV products. Droplet digital PCR (ddPCR) is known for having good reproducibility, not requiring a standard curve, not being affected by inhibitors, and being precise even in the detection of low copies. In the present study, we developed a droplet digital PCR assay for the quantification of HSV-1 and applied it in the oHSV production. The established ddPCR showed good specificity, linearity, a low limit of quantification, great reproducibility, and accuracy. The quantification result was well-associated with that of plaque assay and CCID50. Amplification of the purified virus without DNA extraction by ddPCR presented similar results to that from the extracted DNA, confirming the good resistance against PCR inhibitors. With the ddPCR, viral titer could be monitored in real time during the production of oHSV; the optimal harvest time was determined for the best virus yield in each batch. The ddPCR can be used as a useful tool for the quantification of oHSV and greatly facilitate the manufacturing process of oHSV products.