The function of PMP-22 is unknown, but roles in cell growth, apoptosis, higher order macromolecular structure, and intracellular signaling have been proposed (1). Intrachromosomal duplications (2) and deletions (3) encompassing PMP-22 cause Charcot-MarieTooth disease and hereditary neuropathy with liability to pressure palsies, respectively. In addition, point mutations have been found in patients with Charcot-Marie-Tooth disease, hereditary neuropathy with liability to pressure palsies, and DejerineSottas syndrome (4). Indeed, the first missense mutations to be identified in the PMP-22 gene were found in the Tr (5) and Tr-J (6) mice with identical point mutations shared between humans and mice (7, 8).Many PMP-22 mutations are retained intracellularly (9-12) and appear to belong to a growing class of mutations termed ''endoplasmic reticulum (ER) retention mutations'' that are recognized by ER resident-folding proteins, molecular chaperones, and͞or other enzymes that serve to monitor the fidelity of protein synthesis and macromolecular assembly (13,14). Among ER retention diseases, however, heritable neuropathies caused by PMP-22 mutation or overexpression are unique because they are dominant gain-of-function diseases (15).Here, transient and glucosylation-dependent association of PMP-22 with the ER chaperone calnexin (CNX) was observed. PMP-22 associated only with CNX. Formation of intracellular myelin-like figures (IMLFs) in transfected cells coincided with the cosequestration of CNX in a glucosylation dependent fashion. Similar intracellular myelin-like structures were present in the sciatic nerves of homozygous Tr-J mice. These results provide a mechanistic explanation for the human Charcot-Marie-Tooth disease secondary to the ER retention of mutant PMP-22 via the CNX cycle and provide an unexpected link between the gain-offunction phenotype of such diseases and sequestration of the resident ER lectin chaperone, CNX.
Materials and MethodsMetabolic Labeling, Immunoprecipitations, and Western Blot Analysis.Metabolic labeling and pulse-chase of mouse sciatic nerves and immunoprecipitations for PMP-22 (16) as well as nondenaturing CNX immunoprecipitations, BiP immunoprecipitation, and ATP depletion of cell lysates have been described (17, 18). For sequential PMP-22 immunoprecipitations, lysates were first CNX immunoprecipitated as described (17) followed by resolubilization in 0.5% SDS in 50 mM Tris (pH 8.0) and PMP-22 immunoprecipitated in modified radioimmunoprecipitation assay buffer (50 mM Tris, pH 8.0͞150 mM NaCl͞1% deoxycholate containing 0.5% Nonidet P-40). Samples were electrophoresed, transferred to nitrocellulose membranes, and exposed to film by using the Kodak Biomax Transcreen LE system (NEN). For some experiments, sciatic nerves were pretreated with 1 mM castanospermine (SigmaAldrich) for 1 h at 37°C before and during metabolic labeling. Samples were then homogenized in 2% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate lysis buffer containing 5 mM iodoacetamide and gels processed for fluo...