Major late Paleozoic faults, many with documented strike-slip motion, have dissected the Ordovician-Devonian Appalachian orogen in the Maritime Provinces of Atlantic Canada. Activity alternated between east-west faults (Minas trend) and NE-SW faults (Appalachian trend). NW-SE faults (Canso trend) were probably conjugate to Minas-trend faults. Major dextral movement, on faults with Appalachian trend, in total between 200 and 300 km, began in the Late Devonian. This movement initiated the Maritimes Basin in a transtensional environment at a releasing bend formed around a promontory in the Laurentian margin and thinned the crust, accounting for the major subsidence of the basin. Appalachian-trend strike slip continued in the Mississippian but was accompanied by major movement on E-W Minas-trend faults culminating around the Mississippian-Pennsylvanian boundary, juxtaposing the Meguma and Avalon terranes of the Appalachians close to their present-day configuration. However, strike slip continued during the Pennsylvanian-Permian interval resulting in transpressional deformation that reactivated and inverted earlier extensional faults. A final major episode of transtension, mainly sinistral, occurred during the Mesozoic opening of the Atlantic Ocean. Restoration of movements on these faults, amounting to several hundred kilometers of slip, explains anomalies in the present-day distribution of terranes amalgamated during early Paleozoic Appalachian tectonism. In the restored geometry, the Nashoba and Ellsworth terranes of Ganderia are adjacent to one another, and the Meguma terrane lies clearly outboard of Avalonia. A restored post-Acadian paleogeography, not the present-day geometry of the orogen, should be used as a basis for reconstructions of its earlier Paleozoic history.