Seven years ago, we proposed the concept of addressed fiber Bragg structures (AFBS), which simultaneously perform the functions of: a complexed sensitive element based on two FBGs (2-AFBS) with different Bragg frequencies or FBG with two -phase shifts (2-AFBS), the difference frequency of which is the AFBS address and the value of it is invariant to measured physical fields; a two-frequency laser radiation source, which can operate as in reflection, so as transmission mode respectively to structure above, a self-multiplexed set of sensors, if the difference frequency will be unique for each AFBS, enabling their address multiplexing. In this article, we consider the ontology of AFBS, including the parent structures with 2-or 2-components, successor AFBS with three spectral components and various combinations of difference frequencies: symmetrical and asymmetric, performing the functions of the addressing and converting information signals to the low-frequency region at the same time, along with the functions of rejecting collisions caused by the relative movement of structures relative to each other during measurements. The subjects of interrogation of these structures and their calibration are discussed as well as prospects of AFBS further development based on common tasks born by ontology formalization and decisions of applicability tasks.