Fire following earthquake (FFE) is a common secondary disaster that can inflict great damage to humans. A large number of seismic resilience evaluation methods have been proposed, but few of them consider the influence of FFE. In this study, a multi-scenario simulation based model was developed to evaluate the post-disaster performance of water distribution networks (WDNs) in supplying both firefighting flow and original demand under the effect of seismic damage and FFEs. Hypothetical earthquakes were generated and the spatial–temporal distribution of FFEs was simulated by the Poisson distribution model and the Weibull distribution model. The post-disaster performance was evaluated by two types of seismic reliability metrics. The developed model was applied to a WDN currently operating in China with eight pre-determined earthquake scenarios. The results showed that the firefighting flow was concentrated in the first few hours after the earthquake. Thus, the serviceability of both original demand and firefighting flow was influenced significantly within the first few hours, while little impact was observed after the concentrated firefighting flow was delivered. The proposed model quantified the WDN’s performance under specific seismic damage and potential FFEs, and can be used for the planning, design, and maintenance of WDNs.