To ensure unmanned vehicles can perform a sortie mission quickly, efficiently, safely and reliably after receiving the command, it is necessary to calculate the sortie mission reliability of the shipborne unmanned vehicle group before loading. Aimed at the layout and sortie characteristics of an unmanned vehicle group, a sortie mission network model and a calculation method for sortie mission reliability are designed in this paper. Firstly, this paper uses space partition to parallel search for equal-length minimal paths based on the two-terminal network reliability. Secondly, this paper adopts the sum of disjoint products to process the equal-length minimal path set, innovatively proposing a calculation method for the sortie mission reliability of the shipborne unmanned vehicle group. Finally, the sortie mission reliability for three typical cases was calculated and compared with the Monte Carlo method. The comparative analysis indicates that the proposed method is both accurate and efficient, thereby corroborating its scientific validity and practical effectiveness. This study fills the gap in the field of sortie mission reliability and lays a theoretical foundation for subsequent research. Meanwhile, the method proposed in this paper can also be extended to the reliability calculation of a multiple-vehicle sortie mission in similar enclosed spaces.