In this paper, a Schiff base ligand 1-(2-thiophenylimino)-4-(N-dimethyl)benzene (SL1) bearing azomethine (>C=N-) and thiol (-SH) moieties capable of coordinating to metals and forming colored metal complexes was synthesized and examined as a colorimetric chemosensor. The sensing ability toward the metal ions of Cu2+, Cr3+, Fe2+ Ni2+, Co2+, Mg2+, Zn2+, Fe2+, Fe3+, NH4VO3 (V5+), Mn2+, Hg2+, Pb2+, and Al3+ was investigated in a mixture of H2O and dimethylformamide (DMF) solvent using the UV–Visible spectra monitoring method. The synthesized Schiff base ligand showed colorimetric properties with Cr3+, Fe2+, Fe3+, and Hg2+ ions, resulting in a different color change for each metal that could be identified easily with the naked eye. The UV–Vis spectra indicated a significant red shift (~69–288 nm) from the origin after the addition of the ligand to these metal ions, which may be due to ligand-to-metal charge-transfer (LMCT). On applying Job’s plot, it was indicated that the ligand binds to the metal ions in a 2:1 ligand-to-metal molar ratio. SL1 behaves as a bidentate ligand and binds through the N atom of the imine group and the S atom of the thiol group. The results indicate that the SL1 ligand is an appropriate coordination entity and can be developed for use as a chemosensor for the detection of Cr3+, Fe2+, Fe3+, and Hg2+ ions.