Knowledge of the interactions between polymer and protein is very important to fabricate the potential materials for many bio-related applications. In this regard, the present work investigated the effect of copolymers on the conformation and thermal stability of bovine serum albumin (BSA) with the aid of biophysical techniques such as fluorescence spectroscopy, circular dichroism (CD) spectroscopy and differential scanning calorimetry (DSC). In comparison with that of copolymer PGA-1.5, our fluorescence spectroscopy results reveal that the copolymer PGA-1, which has a lower PEGMA/AA ratio, shows greater influence on the conformation of BSA. Copolymers induced unfolding of the polypeptide chain of BSA, which was confirmed from the loss in the negative ellipticity of CD spectra. DSC results showed that the addition of PGA-1 and PGA-1.5 (0.05% (w/v) decreased the transition temperature by 14.8 and 11.5˝C, respectively). The results from the present study on the behavior of protein in response to changes in the chemical composition of synthetic polymers are significant for various biological applications such as enzyme immobilization, protein separations, sensor development and stimuli-responsive systems.