Abstract. The knowledge of the total column water vapour (TCWV) global distribution is fundamental for climate analysis and weather monitoring. In this work, we present the retrieval algorithm used to derive the operational TCWV from the GOME-2 sensors and perform an extensive inter-comparison and validation in order to estimate their absolute accuracy and long-term stability. We use the recently reprocessed data sets retrieved by the GOME-2 instruments aboard EUMETSAT's MetOp-A and MetOp-B satellites and generated by DLR in the framework of the O3M-SAF using the GOME Data Processor (GDP) version 4.7. The retrieval algorithm is based on a classical Differential Optical Absorption Spectroscopy (DOAS) method and combines H2O/O2 retrieval for the computation of the trace gas vertical column density. We introduce a further enhancement in the quality of the H2O column by optimizing the cloud screening and developing an empirical correction in order to eliminate the instrument scan angle dependencies. We evaluate the overall consistency between about 8 months measurements from the newer GOME-2 instrument on the MetOp-B platform with the GOME-2/MetOp-A data in the overlap period. Furthermore, we compare GOME-2 results with independent TCWV data from ECMWF and with SSMIS satellite measurements during the full period January 2007–August 2013 and we perform a validation against the combined SSM/I + MERIS satellite data set developed in the framework of the ESA DUE GlobVapour project. We find global mean biases as small as ± 0.03 g cm−2 between GOME-2A and all other data sets. The combined SSM/I-MERIS sample is typically drier than the GOME-2 retrievals (−0.005 g cm−2), while on average GOME-2 data overestimate the SSMIS measurements by only 0.028 g cm−2. However, the size of some of these biases are seasonally dependent. Monthly average differences can be as large as 0.1 g cm−2, based on the analysis against SSMIS measurements, but are not as evident in the validation with the ECMWF and the SSM/I + MERIS data. Studying two exemplary months, we estimate regional differences and identify a very good agreement between GOME-2 total columns and all three independent data sets, especially for land areas, although some discrepancies over ocean and over land areas with high humidity and a relatively large surface albedo are also present.