Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Modern astronomical polarimeters often require simultaneous operation of multiple instruments over broad wavelength ranges. The 4 m DKIST solar telescope will soon cover 0.38 to 4.6 μm with at least 12 independent narrow band polarimeters, all in quasi-simultaneous operation. Calibration can be efficiently performed over this entire bandpass using our elliptical retarder design, achieved with just two optically contacted MgF 2 crystal retarder pairs. Calibration requires very well-characterized, uniform, defect-free retarders and polarizers. I report here on the successful development of four extremely large aperture (d ¼ 120 mm) optically contacted MgF 2 retarder pairs used to make a DKIST calibrator and a modulator for the Cryo-NIRSP instrument. All four crystal pairs have clear apertures free of defects. New procedures deliver fast axis alignment in the range of 0.1 deg to 0.2 deg post contact bonding. For the calibrator crystals, a new process was developed using deterministic fluid jet polishing driven by retardance mapping to achieve stringent retardance spatial uniformity. I show that transmitted wavefront error is not a sufficient proxy for retardance polishing. Polishing softer MgF 2 retarder crystals required substantial development to simultaneously achieve flatness, roughness, and retardance uniformity. The optical contact bond ensures there are no bonding agents (oils, epoxies) with spectral absorption bands in the entire 0.3 to 6 μm bandpass without any possibility for leaks or degradation. These four crystals will be used in DKIST and Cryo-NIRSP in a 300 W solar beam and are anticipated to mitigate heating, stability, and UV irradiation issues. I use the Berreman calculus to compute retarder depolarization, with >10% magnitudes found at the shortest wavelengths after including typical crystal optic axis cutting errors and incidence angle variation in converging beams.
Modern astronomical polarimeters often require simultaneous operation of multiple instruments over broad wavelength ranges. The 4 m DKIST solar telescope will soon cover 0.38 to 4.6 μm with at least 12 independent narrow band polarimeters, all in quasi-simultaneous operation. Calibration can be efficiently performed over this entire bandpass using our elliptical retarder design, achieved with just two optically contacted MgF 2 crystal retarder pairs. Calibration requires very well-characterized, uniform, defect-free retarders and polarizers. I report here on the successful development of four extremely large aperture (d ¼ 120 mm) optically contacted MgF 2 retarder pairs used to make a DKIST calibrator and a modulator for the Cryo-NIRSP instrument. All four crystal pairs have clear apertures free of defects. New procedures deliver fast axis alignment in the range of 0.1 deg to 0.2 deg post contact bonding. For the calibrator crystals, a new process was developed using deterministic fluid jet polishing driven by retardance mapping to achieve stringent retardance spatial uniformity. I show that transmitted wavefront error is not a sufficient proxy for retardance polishing. Polishing softer MgF 2 retarder crystals required substantial development to simultaneously achieve flatness, roughness, and retardance uniformity. The optical contact bond ensures there are no bonding agents (oils, epoxies) with spectral absorption bands in the entire 0.3 to 6 μm bandpass without any possibility for leaks or degradation. These four crystals will be used in DKIST and Cryo-NIRSP in a 300 W solar beam and are anticipated to mitigate heating, stability, and UV irradiation issues. I use the Berreman calculus to compute retarder depolarization, with >10% magnitudes found at the shortest wavelengths after including typical crystal optic axis cutting errors and incidence angle variation in converging beams.
In Solar Adaptive Optics (AO), it is common to work with a wide Field of View (FoV), which necessitates special control techniques to enhance system performance. Ground-Layer Adaptive Optics (GLAO) configurations lack sufficient degrees of freedom to correct altitude layers individually, resulting in an averaged correction across the entire FoV. In this work, we introduce alternative, intelligent control schemes to explore options for overcoming current limitations in GLAO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.