Introduction: Hypertension can accelerate and aggravate the process of arterial ageing and calcification. However, the mechanism behind has yet to be well elucidated. Methods: Here, we monitored the dynamic changes of fibronectin (FN)/α5 integrin, bone morphogenetic protein 2/matrix Gla protein (BMP2/MGP) and Runx2 in the aorta of spontaneously hypertensive rats (SHR) and thoracic aortic vascular smooth muscle cells (VSMCs), also the phenotypic transformation of VSMCs during the process of arterial ageing and calcification. Further, study on arterial ageing and calcification through antagonist experiments at the molecular level was explored. Results: We found extracellular FN and its α5 integrin receptor expressions were positively associated with arterial ageing and calcification in SHR during ageing, as well in VSMCs from SHR in vitro. Integrin receptor inhibitor of GRGDSP would delay this arterial ageing and calcification process. Moreover, the elevated FN and α5 integrin receptor expression evoked the disequilibrium of BMP2/MGP, where the expression of BMP2, a potent osteogenic inducer, increased while MGP, a calcification inhibitor, decreased. Furthermore, it was followed by the upregulation of Runx2 and the phenotypic transformation of VSMCs from the contractile phenotype into the osteoblast-like cells. Notably, BMP2 antagonist of rm Noggin was sufficient to ameliorate the ageing and calcification process of VSMCs and exogenous BMP2 adding accelerate and aggregate the process. Conclusion: Our study revealed that hypertension-associated arterial ageing and calcification might be a consequence that hypertension up-regulated FN and its high binding affinity integrin α5 receptor in the aortic wall, which in turn aggravated the imbalance of BMP2/MGP, promoted the transcription of Runx2, and induced the phenotypic transformation of VSMCs from the contractile phenotype into the osteoblast-like cells. Our study would provide insights into hypertension-associated arterial ageing and calcification and shed new light on the control of arterial calcification, especially for those with hypertension.