Glucaric acid is being used increasingly as a food additive, corrosion inhibitor, in deicing, and in detergents, and is also a potential starting material for the production of adipic acid, the key monomer for nylon-66. This work describes a techno-economic analysis of a potential bio-based process for the production of pure glucaric acid from corn stover (biomass). Two alternative routes for oxidation of glucose to glucaric acid are considered: via heterogeneous catalytic oxidation with air, and by homogeneous glucose oxidation using nitric acid. Techno-economic and lifecycle assessments (TEA, LCA) are made for both oxidation routes and cover the entire process from biomass to pure crystalline glucaric acid that can be used as a starting material for the production of valuable chemicals. This is the first TEA of pure glucaric acid production incorporating ion exchange and azeotropic evaporation below 50°C to avoid lactone formation.The developed process models were simulated in Aspen Plus V9. The techno-economic assessment shows that both production routes are economically viable leading to minimum selling prices of glucaric acid of ~ $2.53 /kg and ~ $2.91 /kg for the heterogeneous catalytic route and the homogeneous glucose oxidation route respectively. It is shown that the heterogeneous catalytic oxidation route is capable of achieving a 22% lower environmental impact than the homogeneous glucose oxidation route. Opportunities for further improvement in sustainable glucaric acid production at industrial scale are identified and discussed.