Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Questions? Contact the NRC Publications Archive team atPublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.
NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.
NRC Publications Record / Notice d'Archives des publications de CNRC:http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/object/?id=d701bd8f-9420-441b-a47d-fa15f6876c5d http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/voir/objet/?id=d701bd8f-9420-441b-a47d-fa15f6876c5dModern Physics Letters A Vol. 32, No. 17 (2017) The most important radioisotope for nuclear medicine is 99m Tc. After the supply crisis of 99 Mo starting in 2008, the availability of 99m Tc became a worldwide concern. Alternative methods for producing the medical imaging isotope 99m Tc are actively being developed around the world. The reaction 100 Mo(p, 2n) 99m Tc provides a direct route that can be incorporated into routine production in nuclear medicine centers that possess medical cyclotrons for production of other isotopes, such as those used for Positron Emission Tomography. This paper describes a new approach for manufacturing targets for the (p, 2n) nuclear reaction on 100 Mo and the foundation for the subsequent commercial separation and purification of the 99m Tc produced. Two designs of targets are presented. The targets used to produce 99m Tc are subject to a number of operational constraints.They must withstand the temperatures generated by the irradiation, accommodate temperature gradients from cooling system of the target, must be resilient and must be easily post-processed to separate the 99m Tc. After irradiation, the separation of Tc from Mo was carried out using an innovative two-step approach. The process described in this paper can be automated with modules that easily fit in standard production hot cells found in nuclear medicine facilities.