Bionanocomposites (BNCs) of waxy corn starch, glycerol, and graphene oxide (GO) or graphite oxide (GrO) were prepared by melt mixing. First, the GrO was pre-exfoliated in a water solution using ultrasound at 1 wt %. Small-angle X-ray scattering was used to determinate the interlaminar separation of GrO and transmission electron microscopy, Fourier infrared spectroscopy, and thermogravimetric analysis were used to characterized the GrO. Next, BNCs were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and mechanical property measurements. A complete exfoliation of GrO was obtained in the waxy corn matrix. Amorphous X-ray patterns of the BNCs were observed, indicating that the exfoliated GO avoid the retrogradation of starch. According to scanning electron microscopy results, the BNCs showed an irregular texture and a good dispersion of GO, while thermoplastic starch showed a smooth morphology with a fragile structure. The BNCs exhibited higher thermal stability than thermoplastic starch. The tensile strength and the Young's modulus increased by 140% and 230% at a GO loading levels of 0.5% due to good interfacial interactions of GO and the waxy corn starch matrix.