“…Based on the evaluated scientific papers, seven different main subject streams have been identified: (1) modelling of the OCM process, embracing phenomenological and empirical mathematical descriptions of reactors and respective chemical kinetics [7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22], but also involving theoretical analyses of mechanistic models [23][24][25][26][27][28][29]; (2) economic evaluation of actual OCM commercial implementations, involving the analysis of capital and operational costs [30][31][32][33][34][35]; (3) assessment of environmental impacts, mainly involving the analysis of CO 2 emissions [31]; (4) development of new and/or improved catalysts for the production of ethylene from OCM reactions [27,; (5) development of alternative processes for CH 4 conversion into ethylene and/or other products, including, for instance, the non-oxidative coupling of methane [74][75][76]; (6) investigation of downstream purification strategies [77][78][79], concerning mainly the separation of products from the OCM reactor output stream; and finally, (7) the design, optimisation and development of OCM reactors for ethylene production, including the analysis of distinct reactor concepts (such as chemical looping…”