In this study, the kinetics and mechanism of UV/O3 synergistic oxidative digestion of dissolved organic phosphorus (DOP) were investigated, focusing on the ozone direct oxidation and hydroxyl radical oxidation parts of glufosinate and triphenyl phosphate (TPhP). The p‐chlorobenzoic acid (p‐CBA) was selected as the probe compound, and two kinds of reaction kinetic models were proposed by competitive kinetic method with Rct according to the different scale of rate constants of hydroxyl radical oxidation. Under the condition of weakly alkaline (pH = 9.0) and weakly acidic environment (pH = 5.0), the second‐order rate constants of glufosinate and TPhP was determined indirectly to be ko3/glufosinate = (2.903 ± 0.247)M−1s−1 and ko3/TPhP = (3.307 ± 0.204) M−1s−1 by ozone direct oxidation, and k·OH/glufosinate = (1.257 ± 1.031) × 109 M−1s−1 and k·OH/TPhP = (7.120 × 108 ± 0.963) M−1s−1 by hydroxyl radical oxidation, respectively. The comparison of the contribution levels of the two parts to the digestion process showed that the contribution levels in the digestion of glufosinate and TPhP processes both the contribution of ·OH were higher than those of ozone, 86.3% and 72.6%, respectively.