Certain strains of probiotic bacteria can secret functional substances namely digestive enzymes and functional peptides to regulate physiological conditions such as digestion and anti-oxidation, which are often incorporated in industrial broiler chick production. However, few studies have detailed the action mechanisms and effects of these bacteria on regulating growth and anti-oxidation levels in broiler chickens. Ligilactobacillus salivarius is a strain of probiotic bacteria used as dietary supplement. In the present study, Ligilactobacillus salivarius was evaluated for its secreted digestive enzymes in vitro. To detailed evaluate the action mechanisms and effects of gastrointestinal tract (GIT) microbiota on alleviating anti-oxidation levels of broiler chickens through the gut-brain axis. Ligilactobacillus salivarius was cultured and supplemented in the food of broilers to evaluate the probiotic effect on growth and anti-oxidation by modulation of gut microbial composition and its functional metabolites using metagenomic and metabolomic assays. Biochemical results showed that Ligilactobacillus salivarius secreted digestive enzymes: protease, lipase, and amylase. Broiler chickens with Ligilactobacillus salivarius supplemented for 42 days, showed increased body weights, a reduced oxidative status, decreased malondialdehyde levels, and improved activities rates of total superoxide dismutase, glutathione peroxidase IIand IV improved. The microbial composition of caecum was more abundant than those broiler without probiotics supplementation, owing 400 of total number (489) of bacterial operational taxonomic units (OTU). The genera of Lactobacillus, Megamonas, Ruminoccoccaceae, Ruminococcus, Alistipes and Helicobacter shared the dominant proportion of Candidatus _Arthromitus compared with the control chickens. These functional bacteria genera assisted in the transportation and digestion of amino acids, carbohydrates, and ions, synthesis of cellular membranes, and anti-oxidation. Uncultured_organism_g_ Anaerosporobacter, Lactobacillus salivarius, uncultured_bacterium_g_ Ruminococcaceae_UCG-014, uncultured_bacterium_g_ Peptococcus were strongly and positively correlated with body growth performance and anti-oxidation. A metabonomic assay suggested that the secreted of gamma-aminobutyric acid and monobactam was metabolized according to the Kyoto Encyclopedia of Genes and Genomes analysis. In conclusion, Ligilactobacillus salivarius optimized microbial composition of the caecum and secreted functional peptides through gut-brain axis to improve the body growth and antioxidation of broiler chicken.