Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by severe, progressive fibrosis. Roles for inflammation and oxidative stress have recently been demonstrated, but despite advances in understanding the pathogenesis, there are still no effective therapies for IPF. This study investigates how extracellular superoxide dismutase (EC-SOD), a syndecan-binding antioxidant enzyme, inhibits inflammation and lung fibrosis. We hypothesize that EC-SOD protects the lung from oxidant damage by preventing syndecan fragmentation/shedding. Wild-type or EC-SOD-null mice were exposed to an intratracheal instillation of asbestos or bleomycin. Western blot was used to detect syndecans in the bronchoalveolar lavage fluid and lung. Human lung samples (normal and IPF) were also analyzed. Immunohistochemistry for syndecan-1 and EC-SOD was performed on human and mouse lungs. In vitro, alveolar epithelial cells were exposed to oxidative stress and EC-SOD. Cell supernatants were analyzed for shed syndecan-1 by Western blot. Syndecan-1 ectodomain was assessed in wound healing and neutrophil chemotaxis. Increases in human syndecan-1 are detected in lung homogenates and lavage fluid of IPF lungs. Syndecan-1 is also significantly elevated in the lavage fluid of EC-SOD-null mice after asbestos and bleomycin exposure. On IHC, syndecan-1 staining increases within fibrotic areas of human and mouse lungs. In vitro, EC-SOD inhibits oxidant-induced loss of syndecan-1 from A549 cells. Shed and exogenous syndecan-1 ectodomain induce neutrophil chemotaxis, inhibit alveolar epithelial wound healing, and promote fibrogenesis. Oxidative shedding of syndecan-1 is an underlying cause of neutrophil chemotaxis and aberrant wound healing that may contribute to pulmonary fibrosis.Idiopathic pulmonary fibrosis (IPF) 2 is an interstitial lung disease characterized by severe and progressive fibrosis. IPF patients have a mean survival of 3-5 years (1, 2) and no effective therapies (3, 4), other than orthotopic lung transplantation, have proven to improve survival. The pathogenesis of IPF is poorly understood; however, inflammation and oxidant/antioxidant imbalances in the lung are thought to play important roles (5-7). A better understanding of the molecular mechanisms involved in oxidative injury and fibrosis could lead to the development of novel therapeutic targets.Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme bound to heparan sulfate in the lung extracellular matrix (8 -10), which can inhibit inflammation (11, 12) and prevent subsequent development of fibrosis (13-16). Despite its beneficial role, the mechanisms through which EC-SOD protects the lung remain unknown.The extracellular matrix (ECM) is essential for tissue homeostasis and changes in the ECM microenvironment can be detrimental to cell function during inflammation and wound healing. Heparan sulfate proteoglycans (HSPG) contain a membrane-bound core protein and extracellular carbohydrate side chains. Syndecans are the most abundant HSPG in humans; ...