Oxidative stress plays an important role in the pathogenesis of cataracts. Under oxidative stress, apoptosis of lens epithelial cells (LECs) is activated, which may cause lens opacity and accelerate the development of cataracts. Long non-coding RNA (lncRNA) and microRNA (miRNA/miR) are involved in cataracts. Previous studies have demonstrated that lncRNA taurine upregulated 1 (TUG1) promotes cell apoptosis induced by ultraviolet radiation by downregulating the expression of miR-421. However, the mechanism underlying TUG1 in age-related cataract remains to be elucidated. The present study aimed to investigate the effect of TUG1 in age-related cataracts and to determine the related underlying molecular mechanism. In the present study, the association between TUG1 and microRNA (miR)-196a-5p was predicted using StarBase and verified using a dual luciferase reporter assay in 293 cells. The LEC line SRA01/04 was exposed to 200 µM hydrogen peroxide (H
2
O
2
) for 24 h to establish an
in vitro
oxidative stress model. The mRNA expression levels of TUG1 and miR-196a-5p were analyzed using reverse transcription-quantitative PCR, whilst cell viability and apoptosis were determined using MTT and flow cytometry assays, respectively. The protein expression levels of cleaved caspase-3 and caspase-3 in SRA01/04 cells were determined using western blotting. The results of the present study revealed that TUG1 directly targeted miR-196a-5p expression. In addition, the expression levels of miR-196a-5p were downregulated in SRA01/04 cells following oxidative stress, whilst TUG1 expression was upregulated. Cell transfection with TUG1-small interfering RNA (siRNA) upregulated miR-196a-5p expression levels in SRA01/04 cells, which was reversed following co-transfection with the miR-196a-5p inhibitor. Transfection with TUG1-siRNA also reduced the levels of H
2
O
2
-induced oxidative damage in SRA01/04 cells, which was demonstrated by increased cell viability, reduced levels of apoptosis and downregulated cleaved caspase-3 levels. Conversely, transfection with the miR-196a-5p inhibitor reversed these effects aforementioned. Overexpression of miR-196a-5p reduced H
2
O
2
-induced oxidative damage in SRA01/04 cells. In conclusion, findings from the present study suggested that knocking down TUG1 expression may protect LECs from oxidative stress-induced apoptosis by upregulating the expression of miR-196a-5p.