Streptococcus mutans, the primary etiological agent of human dental caries, has developed multiple mechanisms to colonize and form biofilms on the tooth surface. The brpA gene codes for a predicted surfaceassociated protein with apparent roles in biofilm formation, autolysis, and cell division. In this study, we used two models to further characterize the biofilm-forming characteristics of a BrpA-deficient mutant, strain TW14. Compared to those of the parent strain, UA159, TW14 formed long chains and sparse microcolonies on hydroxylapatite disks but failed to accumulate and form three-dimensional biofilms when grown on glucose as the carbohydrate source. The biofilm formation defect was also readily apparent by confocal laser scanning microscopy when flow cells were used to grow biofilms. When subjected to acid killing at pH 2.8 for 45 min, the survival rate of strain TW14 was more than 1 log lower than that of the wild-type strain. TW14 was at least 3 logs more susceptible to killing by 0.2% hydrogen peroxide than was UA159. The expression of more than 200 genes was found by microarray analysis to be altered in cells lacking BrpA (P < 0.01). These results suggest that the loss of BrpA can dramatically influence the transcriptome and significantly affects the regulation of acid and oxidative stress tolerance and biofilm formation in S. mutans, which are key virulence attributes of the organism.Streptococcus mutans, the primary etiological agent of human dental caries, exists almost exclusively in biofilms on tooth surfaces. The pathogenic potential of S. mutans is attributable to potent biofilm-forming abilities, a high capacity to produce acids, a high degree of acid tolerance, and the possession of high-affinity systems for the assimilation of many carbohydrate sources (9).Biofilms are surface-attached, structurally and compositionally complex bacterial communities (17,(31)(32)(33). Accumulating data suggest that bacterial cells in biofilms interact with and coordinate the expression of a wide range of genes in response to evolving environmental conditions, including pH, oxygen, carbon source and nutrient availability, cell density, and the presence of a solid surface. A series of highly coordinated physiological and biochemical functions is required for the bacteria to form mature biofilms in response to environmental cues (17,(31)(32)(33). The development of highly structured biofilms, however, gives the adherent populations the flexibility to cope with fluctuating environments and the selective advantages that surface association offers (17).Recent studies have revealed that several genetic regulatory networks in S. mutans are required for bacterial adherence, biofilm accumulation, and growth under the conditions encountered during biofilm formation. The cell-density-dependent Com system, which is known to regulate genetic competence in S. mutans and other naturally competent streptococci, plays a significant role in biofilm formation and acid tolerance (20, 21). The LuxS enzyme, which is responsible for th...