Recent geophysical analyses suggest the presence of a late Paleozoic oxygen pulse beginning in the late Devonian and continuing through to the late Carboniferous. During this period, plant terrestrialization and global carbon deposition resulted in a dramatic increase in atmospheric oxygen levels, ultimately yielding concentrations potentially as high as 35% relative to the contemporary value of 21%. Such hyperoxia of the late Paleozoic atmosphere may have physiologically facilitated the initial evolution of insect flight metabolism. Widespread gigantism in late Paleozoic insects and other arthropods is also consistent with enhanced oxygen flux within diffusion-limited tracheal systems. Because total atmospheric pressure increases with increased oxygen partial pressure, concurrently hyperdense conditions would have augmented aerodynamic force production in early forms of flying insects. By the late Permian, evolution of decompositional microbial and fungal communities, together with disequilibrium in rates of carbon deposition, gradually reduced oxygen concentrations to values possibly as low as 15%. The disappearance of giant insects by the end of the Permian is consistent with extinction of these taxa for reasons of asphyxiation on a geological time scale. As with winged insects, the multiple historical origins of vertebrate flight in the late Jurassic and Cretaceous correlate temporally with periods of elevated atmospheric oxygen. Much discussion of flight performance in Archaeopteryx assumes a contemporary atmospheric composition. Elevated oxygen levels in the mid-to late Mesozoic would, however, have facilitated aerodynamic force production and enhanced muscle power output for ancestral birds, as well as for precursors to bats and pterosaurs.