Rates of clearance, ingestion, ammonia excretion, respiration and egg production were measured in food-acclimated (0 to 1700 W C 1-l) planktonic copepods Acartia tonsa in relation to food concentration. Carbon and nitrogen budgets were constructed. Clearance peaked at a food concentration of 150 W C 1-l, and decreased at both higher and lower concentrations. Ingestion and egg production rates increased sigmoidally with food concentration approaching plateaus equivalent to 180 and 64 % body C d-l, respectively. Rates of ammonia excretion and respiration increased with algal concentration in a decelerating manner. Respiration and excretion rates of copepods fed at saturation food concentration were more than 4 times higher than those for starved individuals. The causality of the increased respiration rate in association with feeding (specific dynamic action, SDA) is discussed by considering the physiology and biochemistry of the processes that potentially contribute to SDA. The theoretical biochemical minimum costs of biosynthesis accounted for between 50 and 116 % of observed SDA, while assimilation costs equalled 18 to 28 %. Costs of feeding, digestion and excretion (-1 % of SDA), and the mechanical work required to transport food down the gut, contributed insignificantly to SDA. It is concluded that the increment in metabolic rate of feeding A. tonsa largely relates to biosynthesis ('growth') and transport, and that the efficiency of egg production in this species is near its theoretical maximum.