A B S T R A C T To understand the contribution to the pathophysiology of sickle cell anemia of the different erythrocyte density types present in the blood of these patients, we have studied the viscosimetric and hemodynamic characteristics of four major classes of hemoglobin SS erythrocytes. We have isolated reticulocytes, discocytes, dense discocytes, and irreversibly sickled cells (fractions I-IV) on Percoll-Renografin density gradients. Bulk viscosity was studied in a coneplate viscosimeter and the hemodynamic studies were performed on the isolated, artificially perfused mesoappendix vasculature of the rat (Baez preparation).Bulk viscosity measurements at shear rates of 230 s-' demonstrate that when the cells are oxygenated, fraction I (reticulocyte rich) has a higher viscosity than expected from its low intracellular hemoglobin concentration. The rest of the fractions exhibit moderate increases in bulk viscosity pari-passu with the corresponding increases in density (mean corpuscular hemoglobin concentration). When deoxygenated, all cell fractions nearly doubled their bulk viscosity and the deoxy-oxy differences remained constant. The Baez preparation renders a different picture: oxygenated fractions behave as predicted by the viscosimetric data, but, when deoxygenated, cell fractions exhibit dramatically increased peripheral resistance and the This work was presented, in part, at the 66th Annual