Recently, superconductivity with Tc ≈ 80 K was discovered in La3Ni2O7 under extreme hydrostatic pressure (>14 GPa). For practical applications, we needed to stabilize this state at ambient pressure. It was proposed that this could be accomplished by substituting La with Ba. To put this hypothesis to the test, we used the state-of-the-art atomic-layer-by-layer molecular beam epitaxy (ALL-MBE) technique to synthesize (La1−xBax)3Ni2O7 films, varying x and the distribution of La (lanthanum) and Ba (barium). Regrettably, none of the compositions we explored could be stabilized epitaxially; the targeted compounds decomposed immediately into a mixture of other phases. So, this path to high-temperature superconductivity in nickelates at ambient pressure does not seem promising.