It is known that the behavior of residual Li in ion implanted ZnO depends on the preferential localization of the implants, in particular, forming characteristic Li depleted or Li pileup regions for Zn or O sublattice occupation of the implants due to the corresponding excess generation of Zn and O interstitials in accordance with the so-called "+1 model." However, the present study reveals that conditions for the radiation damage annealing introduce additional complexity into the interpretation of the Li redistribution trends. Specifically, four implants residing predominantly in the Zn-sublattice, but exhibiting different lattice recovery routes, were considered. Analyzing Li redistribution trends in these samples, it is clearly shown that Li behavior depends on the defect annealing kinetics which is a strong function of the implanted fluence and ion species. Thus, Li depleted and Li pileup regions (or even combinations of the two) were observed and correlated with the defect evolution in the samples. It is discussed how the observed Li redistribution trends can be used for better understanding a thermal evolution of point defects in ZnO and, in particular, energetics and migration properties of Zn interstitials.