Maximal metabolic rate (MMR) is elicited by a welldefined dominant process: the energy needs of locomotor activity at its sustainable maximum during a run. In contrast, other forms of MR have a more complex origin. Basal metabolic rate (BMR) reflects the lowest need of energy at rest in a postprandial state under thermoneutral conditions. It is the energy used to run basic cell functions in a large variety of organs, such as maintaining cell potentials, driving the heart and circulation, synthetic and housekeeping functions of all sorts, and maintenance of body temperature. BMR and MMR thus define the span over which the metabolic rate of the organism can vary. Their definitions are unambiguous and, as such, they are reproducible. They reflect the performance of the organism under these specific test conditions, but are not conditions that occur usually in life. Natural forms of MR are intermediate. Field metabolic rate (FMR) reflects the timeaveraged MR elicited by all possible organismic functions at variable levels of activity, such as foraging or hunting for food, or digestion, and is commonly found to be about 4 times BMR. What is termed sustained MR refers to the metabolic rate that allows for maintaining body mass over longer time; it is a form of FMR mostly related to nutrient supply.Whereas BMR appears to depend essentially on body mass, MMR shows large inter-individual and inter-species variability, related to the degree of work or exercise capacity. It is typically about tenfold higher than BMR. Well-trained human athletes can achieve MMR up to 20 times higher than their BMR. Even greater variation is found in animals. Athletic species such as dogs or horses increase their MR by 30-fold from rest to maximal exercise, and in race horses this factor can rise to 50, as in the pronghorn antelope, the world's top athletic mammal.MMR reflects the limitation of oxidative metabolism of muscle cells. It is not sustainable for more than a few minutes because, under these limiting conditions, the incipient aerobic energy deficit must be covered by anaerobic glycolysis, which leads to lactate accumulation in the blood and thus to cessation of exercise.All forms of MR in mammals and other taxa show some scaling with body mass M b according to the allometric The logarithmic nature of the allometric equation suggests that metabolic rate scaling is related to some fractal properties of the organism. Two universal models have been proposed, based on (1) the fractal design of the vasculature and (2) the fractal nature of the 'total effective surface' of mitochondria and capillaries. According to these models, basal and maximal metabolic rates must scale as M 3/4 . This is not what we find. In 34 eutherian mammalian species (body mass M b ranging from 7·g to 500·kg) we found V O ∑ max to scale with the 0.872 (±0.029) power of body mass, which is significantly different from 3/4 power scaling. Integrated structure-function studies on a subset of eleven species (M b 20·g to 450·kg) show that the variation of V O ∑ max wit...