TO THE EDITOR: Podlogar et al. ( 1) have nicely discussed current methods for classifying athletes in applied physiology studies attending to their training or performance level. We agree with them that relying on a single physiological marker such as maximum oxygen uptake is not without limitations and endorse the use of more performance-based indicators. However, before proposing critical power/speed (CP/ CS) as the primary indicator of an athlete's training status, the robustness of these variables and the best method for their determination remains to be confirmed. Differences in mathematical models or test durations can indeed have a remarkable impact on an individual's CP/CS (e.g., up to $1 km/ h for CS in top-level runners) (2).More research is needed to provide reference or "normative" values of CP/CS allowing classification of athletes into different performance/fitness categories. An alternative, at least in cycling, might be classifying athletes attending to the highest power output that they can achieve for a given duration-the so-called "mean maximum power" (MMP) (3). This approach does not require the use of mathematical calculations or additional laboratory testing and is sensitive enough to allow discerning actual performance even between the two highest category levels-Union Cycliste Internationale [UCI] ProTeam versus UCI WorldTour-in professional cyclists (4). We have recently reported normative MMP values for male (n = 144) (4) and female professional cyclists (n = 44) (5). If a similar approach was used in cyclists of a lower training/competition level, scientists and coaches could accurately classify participants in cycling physiology studies.