The fluorite structured actinide dioxides (AnO2), especially UO2, are the most common nuclear fuel materials. A comprehensive understanding of their surface chemistry is critical because of its relevance to the safe handling, usage, and storage of nuclear fuels. Because of the ubiquitous nature of water (H2O), its interaction with AnO2 has attracted significant attention for its significance in studies of nuclear fuels corrosion and the long-term storage of nuclear wastes. The last few years have seen extensive experimental and theoretical studies on the H2O–AnO2 interaction. Herein, we present a brief review of recent advances in this area. We focus on the atomic structures of AnO2 surfaces, the surface energies, surface oxygen vacancies, their influence on the oxidation states of actinide atoms, and the adsorption and reactions of H2O on stoichiometric and reduced AnO2 surfaces. Finally, a summary and outlook of future studies on surface chemistry of AnO2 are given. We intend for this review to encourage broader interests and further studies on AnO2 surfaces.