The reaction of a recently synthesized dihydroboron species complexed with bis(phosphinimino)amide, LBH2 (), (L = [N(Ph2PN(2,4,6-Me3C6H2))2](-)) with 3 equivalents of BH2Cl·SMe2 or one equivalent of BCl3 affords the first stable monohydridoborenium ion, [LBH](+)[HBCl3](-) () that is stable without a weakly coordinating bulky anion. Compound can also be prepared directly by refluxing LH with 3 equivalents of BH2Cl·SMe2. Interestingly, reaction of LBH2 () with elemental sulfur and selenium involves oxidative addition of S and Se into B-H bonds and subsequent release of H2S (or H2Se) from the intermediate LB(SH)2 (or LB(SeH)2) species forming stable compounds with terminal boron-chalcogen double bonds LB[double bond, length as m-dash]S () and LB[double bond, length as m-dash]Se (). The electronic structures of compounds , and were elucidated by high resolution mass spectrometry, multi-nuclear NMR and single crystal X-ray diffraction studies. Ab initio calculations on are in excellent agreement with its experimental structure and clearly support the existence of the boron-sulfur double bond.