Abstract. Observations show strong correlations between large-scale ozone and temperature variations in the tropical lower stratosphere across a wide range of time scales. We quantify this behavior using monthly records of ozone and temperature data from SHADOZ tropical balloon measurements (1998–2016), along with global satellite data from Aura MLS and GPS radio occultation over 2004–2018. The observational data demonstrate strong in-phase ozone-temperature coherence spanning sub-seasonal, annual and interannual time scales, and the slope of the ozone-temperature relationship (O3/T) varies as a function of time scale and altitude. We compare the observations to idealized calculations based on the coupled zonal mean thermodynamic and ozone continuity equations, including ozone radiative feedbacks on temperature, where both temperature and ozone respond in a coupled manner to variations in the tropical upwelling Brewer-Dobson circulation. These calculations can approximately explain the observed (O3/T) amplitude and phase relationships, including sensitivity to time scale and altitude, and highlight distinct balances for ‘fast’ variations (periods < 150 days, controlled by transport across background vertical gradients) and ‘slow’ coupling (seasonal and interannual variations, controlled by radiative balances).