The dynamic window approach (DWA) serves as a pivotal collision avoidance strategy for mobile robots, meticulously guiding a robot to its target while ensuring a safe distance from any perceivable obstacles in the vicinity. While the DWA has seen various enhancements and applications, its foundational computational process has predominantly remained constant, consequently resulting in a heightened level of time complexity. Inspired by the velocity invariance assumption inherent in the DWA and the utilization of polar coordinate transformations in the model, we introduce a high-speed version of the DWA.