The blood-brain barrier (BBB) is the major problem for the treatment of brain diseases because we need to be able to deliver drugs from the vascular system into the central nervous system (CNS). There are no drug therapies for a wide range of CNS diseases and these include neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and cerebral ischemia. Therefore, the focus of this chapter is to discuss how nanoparticles (NPs) can be modified to transport different drug molecules for the treatment of brain diseases. In essence, NPs' surface can be functionalized with molecules such as peptides, antibodies and RNA aptamers and these macromolecules can be attached to the receptors present at the BBB endothelial cell surface, which allows the NPs cross the barrier and subsequently deliver pharmaceuticals to the brain for the therapeutic and/or imaging of neurological disorders. In fact, part of the difficulty in finding an effective treatment for these CNS disorders is that there is not yet an efficient delivery method for drug delivery across the BBB. However, over the last several years, researches have started to understand some of the design rules to efficiently deliver NPs to the brain.