“…λ 1 is called (r 0 , s 1 )-fα m -open iff 1 ̅ -λ 1 an (r 0 , s 1 )fα m -closed. Definition 2.6 [7] If X is a dfts, for each λ 1 , μ 1 ∈ Ӏ X , r 0 ∈ I r0 and s 1 ∈ I s1 then, the 𝛼 𝑚 -Closure and 𝛼 𝑚 -Interior operator of λ 1 is defined as: 𝛼 𝑚 𝐶 τ X ,τ X * (λ 1 , 𝑟 0 , 𝑠 1 ) = ⋀{ μ 1 ∈ Ӏ X : λ 1 ≤ μ 1 , μ 1 is (r 0 , s 1 )-f𝛼 𝑚 -closed}. 𝛼 𝑚 I τ X ,τ X * (λ 1 , 𝑟 0 , 𝑠 1 ) = ⋁ {μ 1 ∈ Ӏ X : λ 1 ≥ μ 1 , μ 1 is (r 0 , s 1 )-f𝛼 𝑚 -open}.…”