Electrical resonators are usually characterized by their resonance frequency, attenuation and quality factor. External quantities can affect these parameters, resulting in a characteristic change in the resonator, which can be used as a sensor effect. This work presents a new concept and electronic device for the continuous recording of resonator characteristics using single-sideband modulation. A test signal consisting of a center frequency and two sidebands is generated and the center frequency is set close to the resonator’s resonance frequency while the two sidebands are adjusted symmetrically around the center frequency. By exiting the resonator with the test signal and demodulating the resulting output into individual frequency components, a continuous measurement of the attenuation is possible. The center frequency is adjusted so that both sidebands have equal attenuation, resulting in a center frequency that corresponds to the resonance frequency of the resonator. If the resonator does not show a symmetrical frequency response, the sideband attenuation ratio can be adjusted accordingly. Continuous recording of the resonator characteristics at a sampling rate of 100 Sps was verified using a digitally tunable RLC series resonator with resonance frequencies between 250 MHz and 450 MHz, resulting in a maximum error below 1.5%.