The nerve growth factor (NGF) receptor, trkA, the tumour suppressor p53 and the phosphatase SHP-1 are critical in cell proliferation and differentiation. SHP-1 is a trkA phosphatase that dephosphorylates trkA at tyrosines (Y) 674 and 675. p53 can induce trkA activation and tyrosine phosphorylation in the absence of NGF stimulation. In breast cancer tumours trkA expression is associated with increased patient survival. TrkA protein expression is higher in breast-cancer cell lines than in normal breast epithelia. In cell lines (but not in normal breast epithelia) trkA is functional and can be NGFstimulated to promote cell proliferation. This study investigates the functional relationship between trkA, p53 and SHP-1 in breast-cancer, and reveals that in wildtype (wt) trkA expressing breast-cancer cells both endogenous wtp53, activated by therapeutic agents, and transfected wtp53 repress expression of SHP-1 through the proximal CCAAT sequence of the SHP-1-P1-promoter and the transcription factor NF-Y. In these cells trkA-Y674/Y675 phosphorylation is detected when SHP-1 protein levels decrease in a wtp53-dependent manner. Proliferation and cell-cycle assays, with cells expressing endogenous or transfected wt-trkA and a temperature-sensitive p53 grown at 32 1C (when p53 is in the wt configuration), show suppressed cell proliferation. Suppression is not detected when grown at 37 1C (when p53 is in the mutant configuration). A release from suppression is observed when these cells are transiently transfected with wt-SHP-1 and grown at 32 1C. Suppression is also detected when, as control, wt-trkA-expressing cells are transiently transfected with SHP-1-siRNA, but not when a dominant-negative (DN) mutant trkA is used to abolish wt-trkA activity. Importantly, suppression is not seen with control trkA-negative breast-cancer cells (expressing wtp53, wt-SHP-1 and undetectable trkA), transfected with Y674F/Y675F mutant-trkA. BrdUincorporation experiments reveal lack of incorporation in cells expressing wt-trkA and wtp53, or wt-trkA and SHP-1-siRNA. However, BrdU is incorporated in the presence of Y674F/Y675F mutant trkA or DN mutant trkA. These results indicate that p53 repression of SHP-1 expression leads to trkA-Y674/Y675 phosphorylation and trkA-dependent suppression of breast-cancer cell proliferation. These data provide an explanation as to why high trkA levels are associated with favourable prognosis.