An integrated access and backhaul (IAB)-enabled small-cell network commonly utilizes frequency channels for access and backhaul links, and thus this network has a chance to utilize the frequency channels efficiently and optimally. However, there are still several problems with applying the IAB technology to practical small-cell networks, such as extremely high computational complexity caused by shared resource utilization and additional co-tier and cross-tier interference management. Therefore, we herein propose a multi-agent distributed Q-learning with pre-resource partitioning (MADQ-PRP) algorithm to solve the problem of frequency channel allocation and energy consumption. In MADQ-PRP, to reduce the computational complexity, each RL agent only considers its local state information to determine its following action. Nevertheless, by sharing and redistributing the rewards among agents, the overall reward can be maximized. Furthermore, we devise a pre-resource partitioning method depending on the variations in the number of SBSs per MBS and the numbers of MBS and SBS channels to reduce the computational complexity of the proposed MADQ-PRP algorithm. Through intensive simulations, we show the convergence of the proposed MADQ-PRP algorithm to the optimal solution obtained by the exhaustive search algorithm. Also, we demonstrate that the proposed MADQ-PRP algorithm outperforms several benchmark algorithms such as 'Random action,' 'SBS on-off,' 'SBS-only,' and 'MADQ-only' in IAB-enabled small-cell networks with non-uniform traffic distribution. Furthermore, it is confirmed that the proposed MADQ-PRP algorithm can reduce the CPU execution time by 9.1% and 97.9% compared to the distributed and centralized RL algorithms, respectively. The proposed algorithm based on the lowcomplexity RL and PRP could be one of the solutions to optimize the heterogeneous network performance from the perspective of the network operators when considering the coverage-capacity tradeoff.INDEX TERMS Low complexity multi-agent Q-learning, pre-resource partitioning, network-wide energy efficiency, user outage, integrated access and backhaul, IAB-enabled small-cell network.
I. INTRODUCTION
A. BACKGROUND AND MOTIVATIONM OBILE data traffic is expected to exponentially increase in the forthcoming sixth generation (6G) cellular networks [1]-[5]. However, the limited frequency resources are insufficient to support this traffic demand. Fur-thermore, access and backhaul networks require a large amount of spectrum bandwidth as well as consume a vast amount of energy to support many kinds of real-time mobile application services. In particular, access technology accounts for a large portion of the total network energy consumption [6]- [8]. Also, to meet the technical requirements of