TESIS DOCTORAL ANALYSIS, MONITORING, AND MANAGEMENT OF QUALITY OF EXPERIENCE IN VIDEO DELIVERY SERVICES OVER IP by Pablo Pérez García This thesis proposes a comprehensive approach to the monitoring and management of Quality of Experience (QoE) in multimedia delivery services over IP. It addresses the problem of preventing, detecting, measuring, and reacting to QoE degradations, under the constraints of a service provider: the solution must scale for a wide IP network delivering individual media streams to thousands of users.The solution proposed for the monitoring is called QuEM (Qualitative Experience Monitoring). It is based on the detection of degradations in the network Quality of Service (packet losses, bandwidth drops. . . ) and the mapping of each degradation event to a qualitative description of its effect in the perceived Quality of Experience (audio mutes, video artifacts. . . ). This mapping is based on the analysis of the transport and Network Abstraction Layer information of the coded stream, and allows a good characterization of the most relevant defects that exist in this kind of services: screen freezing, macroblocking, audio mutes, video quality drops, delay issues, and service outages. The results have been validated by subjective quality assessment tests. The methodology used for those test has also been designed to mimic as much as possible the conditions of a real user of those services: the impairments to evaluate are introduced randomly in the middle of a continuous video stream.Based on the monitoring solution, several applications have been proposed as well: an unequal error protection system which provides higher protection to the parts of the stream which are more critical for the QoE, a solution which applies the same principles to minimize the impact of incomplete segment downloads in HTTP Adaptive Streaming, and a selective scrambling algorithm which ciphers only the most sensitive parts of the media stream. A fast channel change application is also presented, as well as a discussion about how to apply the previous results and concepts in a 3D video scenario.