The aim of this study was to estimate genetic divergence and select BC 1 F 3 populations of dwarf tomato plant within the Santa Cruz segment by computational intelligence techniques. The experiment was conducted in a greenhouse in the Vegetable Crop Experimental Station of the Universidade Federal de Uberlândia (UFU), Monte Carmelo, MG, Brazil. A randomized block experimental design was used with 17 treatments and four replications. The genetic material evaluated comprised thirteen dwarf tomato plant populations obtained by a backcross and two self-fertilizations, plus both parents (recurrent and donor), and two commercial check varieties. The traits evaluated were mean fruit weight (MFW), soluble solids content (SSC), fruit diameter (FD), fruit length (FL), fruit shape (FS), pulp thickness (PT), number of locules (NL), distance between internodes, and acylsugar, β-carotene, and lycopene content. The data were analyzed by means testing, and genetic divergence was measured using Mahalanobis generalized distance by the unweighted pair group method with arithmetic mean (UPGMA) and through computational intelligence using Kohonen self-organizing maps (SOM). Genetic dissimilarity in relation to the donor parent could be confirmed through both methodologies. However, the SOM was able to detect differences and organize the similarities among the populations in a more consistent manner, resulting in a larger number of groups. In addition, the computational intelligence techniques allow the weight of each variable in formation of the groups to be ascertained. Among the BC 1 F 3 populations, UFU-SC#3 and UFU-SC#5 stood out for agronomic traits, and UFU-SC#10 and UFU-SC#11 stood out for quality parameters.