Third Latin American Web Congress (LA-WEB'2005)
DOI: 10.1109/laweb.2005.27
|View full text |Cite
|
Sign up to set email alerts
|

Page Clustering Using a Distance-Based Algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 14 publications
0
3
0
Order By: Relevance
“…Mojica et al [17] used a modification of method, proposed by Gomez [14] for web page clustering in dynamic environments.…”
Section: B Gravitational Clusteringmentioning
confidence: 99%
“…Mojica et al [17] used a modification of method, proposed by Gomez [14] for web page clustering in dynamic environments.…”
Section: B Gravitational Clusteringmentioning
confidence: 99%
“…Cluster content Clustering algorithm Methodology Cadez et al (2002) and Pallis et al (2007) Web users Partitional hard Model based Perkowitz and Etzioni (1998) Web pages Partitional hard Similarity based Petridou et al (2008) Web users Partitional hard Similarity based Shokry et al (2006) and Suryavanshi et al (2005) Web pages Partitional fuzzy Similarity based Mojica et al (2005) Web pages Hierarchical hard Similarity based Yang and Padmanabhan (2005) Web users Hierarchical hard Similarity based Lazzerini et al (2003) Web users Hierarchical fuzzy Similarity based Castellano et al (2007) Web users Partitional fuzzy Similarity based He et al (2002) and Huang et al (2006) Web pages Hard Spectral clustering Mobasher (1999) and Mobasher et al (2002) Web pages Fuzzy Similarity based Zeng et al (2002) Web users/pages Hard Model based Liu et al (2005) Web users/pages Fuzzy Similarity based…”
Section: Approachmentioning
confidence: 99%
“…Cluster content Clustering algorithm Methodology Cadez et al (2002) Web users Partitional hard Model based Petridou et al (2008) Web users Partitional hard Similarity based Shokry et al (2006) Web pages Partitional fuzzy Similarity based Mojica et al (2005) Web pages Hierarchical hard Similarity based Yang and Padmanabhan (2005) Web users Hierarchical hard Similarity based Lazzerini et al (2003) Web users Hierarchical fuzzy Similarity based Castellano et al (2007) Web users Partitional fuzzy Similarity based Zeng et al (2002) Web users/pages Hard Model based Liu et al (2005) Web users/pages Fuzzy Similarity based Table I. An overview of clustering approaches IJWIS 5,3 measures such as Euclidean or Manhattan distances (hence "divergence" rather than "distance"), it is expected to be robust against noise.…”
Section: Approachmentioning
confidence: 99%